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ON F R E E Z I N G  O F  T H E  B O U N D A R Y  B E T W E E N  G R O U N D S  S A T U R A T E D  

W I T H  S O L U T I O N S  O F  D I F F E R E N T  T E M P E R A T U R E  A N D  C O N C E N T R A T I O N  

A. G. Egorov UDC 536.4:551.3 

We study the dynamics of phase transitions at the contact of two porous half-spaces. At the initial 
time, one of these half-spaces has a temperature below zero. Its pores are partially filled with ice and partially 
with a concentrated solution which is in thermodynamic equilibrium with the ice at the given temperature. 
The other half-space is free from ice and contains a warmer and less concentrated solution. 

The presence of a two-phase zone - -  the region in which ice and the solution coexist - -  is responsible 
for the specific features of the process considered. This process is described using the approach of [1, 2], which 
is based on the mechanics of multiphase media. It was used in studies of the thawing or freezing of porous 
grounds [1-4]. 

In the situation considered, the picture of phase transitions is complicated, because it includes not 
only thawing of ice in the initially "cold" part of the space, but, under certain conditions, freezing of ground 
near the boundary of the half-spaces. Freezing means the occurrence of a zone with an elevated ice content 
in pores. On complete freezing, ice completely occupies the pores. The main goal of the present work is to 
obtain criteria of formation for the corresponding zones in terms of initial temperatures and concentrations. 

From a practical viewpoint, the interest in the given problem is caused by the problem of the stability 
of the ice-rock barriers produced in permafrost [5] by sequential pumping of a concentrated brine and fresh 
water. In addition, the results obtained can also be useful in studies of other processes in frozen grounds. In 
particular, they point to one of the possible mechanisms of formation of naturally occurring ice lens. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  At the initial moment, the porous space is divided into two parts 
by the plane x = 0. At x > 0, one part of the pores is occupied by ice, and the other is occupied by a 
concentrated solution which is in thermodynamic equilibrium with ice. At x < 0, the pores are completely 
filled with a warmer and less concentrated solution. 

The heat-and-mass transfer processes that occur in time in the system considered can be described [1, 
4] by the equations 
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Here t is time, z is the spatial coordinate, m is the porosity, # is the moisture content (the portion of pores 
occupied by the solution), V is the filtration rate, c and T are the concentration and temperature of the 
solution, L is the latent heat of melting, D is the diffusivity of the salt in water, T I = 0 is the temperature 
of phase transition for pure water, C.~ and A0 are the volume heat capacity and heat conductivity of the 
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porous bed, Cm, Ci, and C,~ are the volume heat capacities of the frame, ice, and water, ,~w and Ai are the 
heat conductivities of the porous bed with the pores completely filled with water and ice, pw and pi are the 
densities of water and ice, and 7 is the cryoscopic constant. 

Relation (1.4) indicates that /* lies on the plot of the corresponding Heaviside function: 0 < # < 1 
with satisfaction of the condition T = T I - 7c of local thermodynamic equilibrium, # = 1 (no ice) at higher 
temperatures, and/* = 0 (the pores are completely occupied by ice) at low temperatures.  

The initial conditions are of the form 

t = O ,  x > O :  /*=/*+,  c = c + ,  T = T + = T f - 7 c +  ( 0 < / * + < 1 ) ,  
(1.6) 

t = 0 ,  x < 0 :  / * = / * _ = 1 ,  c = c _ ,  T = T _  ( T - > T f - T c - ) .  

Let the filtration rate obey the boundary condition 

-V+IV_ = r O, (1.7) 

where ~ is the given constant, and V+ and V_ are the filtration rates at x --+ +0o and x ---* - 0 %  respectively. 
Taking into account that the difference V+ - V_ is equal to the mass unbalance that occurs as a result 

of phase transitions [see (1.1)], 
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we can rewrite relation (1.7) in one of the following forms: V_ = - Q / ( 1  + () and V+ = (Q/(1  + (). 
The nonnegativeness of ( means the prohibition of "through" fluid flow through the zone of phase 

transitions: everywhere at infinity, the fluid moves either to this zone (for Q < 0) or from it (for Q > 0). 
In what follows it will be shown that  the main characteristics of the process considered depend only 

slightly on the choice of (. As this quantity we shall use the ratio of the permeabilities of the media for 
z = 4-0o unless otherwise specified. Permeability in this case is assumed [1] to be proportional to/ ,2/3,  so 
that ( =/.2/3. 

The formulated problem (1.1)-(1.7) admits a self-similar solution. We introduce the corresponding 
self-similar variable 

= x / 2 C J  

and normalize (T - TI) , c, and V to 
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retaining the previous notation IT now denotes (T - TI)/T~ 
The original problem reduces to solving the following system of ordinary differential equations: 

-~/*' + V' = 0; (1.8) 

-((/*c)' + e~(Vc)' = (1/2)ed(/*c')'; (1.9) 

- ( ( ~ T  +/*)' + ~, , (VT) '  = (1/2)(~T')'; (1.10) 

S' 6 n ( c  + T) (1.11) 

The boundary conditions are 

/* (0o)  = / * + ,  

T(0o) = T+, 

/ * ( - 0 o ) = 1 ,  V ( 0 o ) l V ( - 0 o ) = - ( ,  c ( 0 o ) = - T + ,  

c ( -0o)  = c_, T ( - 0 o )  = T_, (1.12) 

where 

a(/*) = 1 - ~ o ( 1 - # ) ;  f l (# )=  1+,8o(1-/*) ;  Sv=(Pw-Pi)lpw; 
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~,~ = D / a ;  ~,~ = E v m C ~ , / C ~  ~o = m ( C w  - coIc~ 8o = - ~ w ) l ~ w .  

In typical situations, the dimensionless parameters of the problem are small: 

ev, s0,/30 "~ 10-1, ern "~ 10 -2, ed "~ 10-2-10-3. (1.13) 

Hence, it is reasonable to consider first a simple model in which these parameters in (1.8)-(1.10) are 
set equal to zero. As can be seen from the following, this model describes well a number of qualitative aspects 
of the process studied, and, in many cases, it gives good quantitative agreement with the general model 

(1.8)-(1.12). 
2. A n a l y s i s  of  t h e  s imp le  M o d e l .  From Eq. (1.9) and boundary conditions (1.12) it follows that 

the amount of admixture #c per unit pore volume is the known piecewise-constant function of f: 

0+ = # + c + ,  ~ > 0, 

Hence Eq. (1.11) takes the form # E H(O/# + T). 
Solving this equation for #, we find 

1, T ~ - 0 ,  
# = #(T, O) = -O/T ,  T <~ -0 .  ( 2 . 1 )  

In this case, Eq. (1.10) is written in the form 

- 2 ~ ( T  + #(T, 0(~)))' = T" (2.2) 

and serves to find T. It can be viewed as an ordinary heat-conduction equation with the known dependence 
of the heat capacity k on temperature and the spatial coordinate: 

1, T/> -0(~) ,  
-2~k(T ,~)T '  = T",  k = 1 + O/T 2, T <~ -0(~).  

The solution of the corresponding problem decreases monotonically from T_ (at ~ = - o o )  to T+ (at 
= oo). According to (2.1), the moisture content # in this case also decreases monotonically in two-phase 

zones. The number of such zones and the behavior of the function #(~) depend on the type of relationship 

between the three quantities: 0+, 0_, and 0, = -T(0 ) .  
It is easy to verify that  the five possible variants of their mutual arrangement (0_ > 0., 0_ < 0. < 0+, 

0_ < 0+ < 0,, 0+ < 0. < 0_, and 0+ < 0_ < 0,) correspond to five different modes of behavior of #, shown 

schematically in Fig. 1 (A-E).  
The value of T(0) depends on 0_, 0+, T_, and 7"+. Other parameters fixed, it increases with increase 

in T_. Hence, it is clear that, with increase in temperature 71- from T+ to co, the different modes of behavior 
of the moisture content occurs in the sequence C --* B ~ A for 0_ < 0+ and E ---* D --* A for 0+ <: 0_. 

Regimes B and C are of greates~ interest. They are characterized by the formation of negative ~ near 
the zero of the zone of elevated ice content in the pores. Extending the meaning of the well-known term, 
we shall call such a zone a lens. It follows from (2.1) that,  with decrease in c_, the ice content in the lens 
increases. In the limit c_ --* 0, we have # --* 0 in the lens. This situation is shown by the dot-and-dashed 
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curves in Fig. 1. The corresponding lens will be referred to as impermeable, which implies the absence of a 
liquid phase in it. 

We examine the case c_ = 0 in greater detail. Here 0_ = 0 and, hence, by virtue of the positiveness of 
8+, the modes of behavior of mixture content can occur only in the sequence C --* B --~ A as T_ increases. 
In this case, the most important  is the question of the critical temperature TZ at which, at fixed It+ and T+, 
transition between regimes A and B occurs, i.e., an impermeable lens is formed. 

To find the critical temperature  as a root of the equation O.(T_*, It+, T+) = 0, it is necessary to solve the 
differential equation (2.2) repeatedly. It was solved numerically on a grid which was made finer near ~ = 0 by 
the upper relaxation method. Because of the rapid decay of T and It as 1~[ --. r we used a finite calculation 
interval and transferred boundary conditions of the form (1.12) from infinity to its ends. The choice of the 
segment [~[ < 4 as the calculation interval was adequate in the calculations. 

The calculation results are shown in Fig. 2 (dashed curves) as level lines of the function UI(T+, It+) = 
-T*_/T+. This ratio increases monotonically with increase in T+ from unity at T+ = - c r  to infinity at T+ = 0. 
The dependence of the critical temperature on g+ is nonmonotonic. The minimum value of U1, equal to unity, 
is reached at the points #+ = 1 and It+ = 0, and the maximum value is reached at the point p ~ = .  The 
quantity It~=x practically does not depend on T+ and is equal to approximately 0.33. 

Note that an impermeable lens also occurs in the situation where, initially, there was no ice in the 
porous bed (it+ = 1). Moreover, the necessity of formation of an impermeable lens is most understandable 
precisely in this case. 

Indeed, if the phase transition "water-ice" did not proceed there, the temperature of the medium would 
be distributed by the law T = T+ - (1/2)(T+ - T_)erfc(~) and take the value To = (T+ + T_)/2 at ~ = 0. 
The dependence c(~) would be a step function and coincide with zero for ~ < 0 and with - T +  for ~ > 0. At 
the same time, by virtue of the one-phase solution of the problem, the inequality T(~) > -c(~)  should be 
satisfied everywhere. The point ~ = 0 is critical for this inequality. The one-phase condition To > - c ( - 0 )  can 
be satisfied at this point only at sufficiently high T_, i.e., at T_ > T_* = - T + .  At lower T_, the curves of T(~) 
and -c(~)  intersect at negative values of ~, and this indicates the necessity of formation of a lens there. 

Similar reasoning can be used for the general formulation of problem (1.8)-(1.12). The role of diffusion 
in this case reduces to spreading the step in c(~), and the role of convection reduces to transferring this step to 
the right (at positive V). From geometrical considerations it is clear that the first will prevent the formation 
of a lens, and the second will facilitate this. 

3. Ana ly s i s  o f  t h e  G e n e r a l  M o d e l .  Problem (1.8)-(1.12) in the general formulation was solved 
numerically on a grid that  was made finer near ~ = 0. As before, the boundary conditions (1.12) were 
transferred from infinity at the ends ~ = +4 of the calculation interval. An iterative method with splitting of 
the problem into physical processes was used. In each iteration, proceeding from the values of V and 0 = pc 
and using the upper relaxation method, we first sought the functions T and p as a solution of the problem 
(1.10) and (2.1). After that,  the values of V were determined by integrating (1.8), and the values of c were 
determined by the sweep method from Eq. (1.9) with the functions V and It calculated in this iterative step. 
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The calculations were performed, as a rule, on a grid with 100 points, a third of which fall into the zone of 
lens. The results were tested on grids that  had 2 and 4 times the number of points. 

The calculation results depend only slightly on the values of ~0, 80, and cm with the orders of magnitude 
determined in (1.13). The latter indicates that  convective heat transfer in the processes studied can be ignored 
compared with conduction. The convective transfer of the admixture, however, is significant because of the 
weak diffusion mechanism. 

Thus, the difference of the general formulation of the problem from the simplified formulation consists 
primarily in taking into account transfer (convective and diffusion) of the admixture. Based on the calculations 
performed, we consider in greater detail the effect of this on the lens-formation process. 

As will be shown below, the filtration rate in the lens zone is always positive. Thus, the weakly 
concentrated salt solution is pushed here to the low-temperature region, and this leads to freezing of the 
porous bed. This effect works at nonzero values of c_. Therefore, an impermeable lens can form there for 
c_ > 0 as well, in contrast to the simple model. The effect of convective mass transfer on the values of/~, c, 
and T is confined within the zone of the lens (low #). Beyond the lens zone, neglect of convection does not 
lead to any marked change in the desired functions. This-is easy to understand by comparing the first two 
terms of Eq. (1.9). 

Furthermore, it is evident from this equation that  the effect of the diffusion process is significant 
at small ~, i.e., again in the lens zone. The admixture flow directed to this zone from the zone of high 
concentrations decreases the local thawing point in it, thus preventing the growth of the lens. This effect 
leads, in particular, to the fact that ,  at c_ = 0, not every lens is impermeable, as in the simple model. 

Figure 3 shows schematically the possible modes of behavior of the function/z(~) in the case 0_ < 0+. 
They correspond to the regimes A, B, and C of the simple model. With increase in T_, the function/z changes 
in the sequence C1 ---, B1 ~ A (low T+) or C2 ~ B2 ~ A (high T+). In both cases, there axe two critical 
values of 7'_: (1) T_ 1 corresponds to the occurrence of a local minimum of the function/~(~) (transition B1 ---, A 
or B2 --* A), i.e., the onset of formation of a lens; (2) T_ 2 corresponds to the occurrence of a point at which 
/~ vanishes (transition B1 ~ C1 or B2 ~ C2), i.e., the occurrence of an impermeable lens. The values of the 
critical temperatures depend on/z+,  T+, and c_ and reach their minimum at c_ = 0. 

For this case (c_ = 0), Fig. 2 (solid curves) and Fig. 4 show the level lines of the functions U1 (T+, #+) = 
-T1/T+ and U2(T+,/~+) = -T2_/T+. In the calculations we assumed that a0 = 80 = cm = 0 and ~d = 3.10 -3. 

The value of U1 increases infinitely at T+ ---* 0 and 0 < /~ < 1. At p+ = 0, it can be equal to unity, 
and, at /~+ = 1, it can be somewhat smaller than unity. The corresponding value can be determined using 
the same line of reasoning as that  in Sec. 2 for a similar situation. As Cd ---* 0, it is approximately equal to 
1 -- 2V/T~, and this is 0.89 for the given ca. The special level line U1 = 1 issues out of the point/~+ = 1, T+ = 0 
and is closed by the axis #+ = 0 for T+ ~ - ~ .  

It can be seen from Fig. 2 that the critical value of T_ 1 agrees qualitatively well with the critical value 
of T_* for the simplified model. A certain decrease in T_ 1 compared with 7* is explained by the action of 
the diffusion transfer of the admixture, while convection, which is significant only for small/~, has not yet 

manifested itself. 
The function U2(#+,T+) reaches a maximum value (.~1.87) at the point #+ ~ 0.45, T+ .~ -0.06. The 

level lines of this function for U2 > 1 are closed, and, for U2 < 1, they originate from the straight line #+ = 1 
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and approach asymptotically the axis #+ = 0. In the dashed region in Fig. 4,/-/2 is not defined. In this region, 
the second critical temperature  is not reached, and, hence, an impermeable lens is formed at none of the 
values of T_. In particular, it cannot occur at T+ > T~ nin ~ -0.018 irrespective of the values of #+ and T_. 

Of the two critical temperatures U/ and U2, the second decreases much more rapidly with increase 
in c_. Thus, with increase in c_ from zero to 0.01, the value of U/ changes by less than 7%, w h e r e a s  T~ in 
decreases from -0.018 to -0.21. This value reaches -0 .6  even at c_ = 0.03. For a porosity m = 0.3 and 
a solution of NaCI, the indicated values correspond to a concentration of 4 g/l i ter  and a temperature of 
-15~ Thus, it is clear that  the necessary condition of formation of an impermeable lens is the contact of 
the concentrated brine with practically pure water. 

With increase in the diffusivity ca, the critical parameters behave in the same manner.  This is illustrated 
in Fig. 5, which shows the values of the functions UI(T+) and U2(T+) at ea = 0.003 (solid curves) and ea = 0.01 
(dashed curves) calculated for #+ = 0.3 and c_ = 0. 

We examine the lens-formation process with variation in the value of ~, which characterizes the ratio 
of the liquid flows from infinity into the phase-transition zone. The limiting values of ~ (0 and oo) are reached 
in the absence of liquid inflow from the frozen and thawing zone, respectively. The intermediate values of 
correspond to zero filtration rate at the final point of the region. In any case, the difference of the values of 
V(~) from zero is associated only with phase transitions [see (1.8)], and its behavior is governed by the type 
of #(~). It follows from Fig. 3 and Eq. (1.8) that the value of V increases at negative ~, reaches a maximum 
in the lens zone, and then decreases. This leads to a positive filtration rate in the lens region: otherwise, V(~) 
would have been negative everywhere and zero would not have reached. 

The smallness of V does not permit convection to affect significantly the main characteristics of the 
processes beyond the range of small values of/~. It is not surprising, therefore, that  the first critical temperature 
practically does not depend on the choice of ~. It is somewhat unexpected, however, that the second critical 
temperature also depends only slightly on ~. This can be seen in Fig. 5, which shows the spread of U2 for the 
limiting values of ~; the minimum corresponds to ~ = ~ ,  and the maximum corresponds to ~ = 0. 

This fact requires explanations, because, in the absence of convection (V = 0), the second critical 
temperature is not defined at all, and an impermeable lens is not formed. In this case, with decrease in T_ in 
the lens zone, the value of/~(~) becomes smaller and smaller, but never vanishes. The value of T_ for which/~ 
reached a given small value can serve as an analog of the second critical temperature.  The function /)2 that 
corresponds to the second temperature and calculated for the threshold value #+ = 0.03 is shown in Fig. 5 
by the dot-and-dashed curve. 

For large values of - T + ,  its departure from similar curves constructed with allowance for convective 
mass transfer is small. This indicates that the main contribution to the formation of an impermeable lens here 
is associated with diffusion. With increase in T+, the difference of the indicated curves increases. Convection 
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plays an ever greater role. But, simultaneously, the value of the velocity V max in the lens zone depends more 
and more slightly on the choice of (, and this is associated with an increase in the portion of internal flows 
in the phase-transition zone compared with liquid inflow to this zone from infinity: melting and freezing in 
various portions of the zone compensate one another. The ratio IV max - V+]/]V+ - V_], which does not 
depend on the choice of ( and characterizes this phenomena, calculated for the second critical temperature 
for T+ = -0.05 is equal to 1.4, and, for T+ = -0.5,  it is only 0.27. 

The weak dependence of the desired characteristics on the choice of ~ justifies to a certain degree the 
value of ~ adopted in the present paper. 

We are grateful to V. A. Mironenko for his attention to given problem, and A. V. Lapin for useful 
discussions of computational aspects. This work was supported by a grant from the Moscow State Geological- 
Exploration Academy (Grant No. 25-7.2-8). 
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